The existence and stability of co-exist periodic solutions are investigated by using the bifurcation theory, the implicit function theorem and the method of asymptotic expansion. 运用分歧理论、隐函数定理以及渐近展开的方法,获得了共存周期解的存在性与稳定性的结果。
Asymptotic Expansion and Super Convergence of a Kind of Quasilinear Parabolic and Hyperbolic Equations Using Generalized Finite Element Method; An A.D.I FEM and Error Estimation for a Nonlinear Hyperbolic Equations 一类拟线性抛物与双曲方程广义有限元方法的渐近展式和超收敛1类非线性双曲型方程的交替方向有限元方法及误差估计
A Multiscale Asymptotic Expansion and its Convergence Analysis for the Wave Propagation Problem in Small Periodic Composite Materials 小周期复合材料波传播问题的一个多尺度渐近展开式及其收敛性分析
An Asymptotic Expansion for Quasi-liner Singular Perturbation Problem of Hyperbolic-Parabolic Partial Differential Equation 双曲-抛物奇异摄动问题的O(ε~n)阶渐近展开
The uniqueness of the solution is proved, and the asymptotic expansion of the solution and remainder estimation are also given. 研究了一类含有迁移项的奇摄动抛物方程的周期解问题,给出了解的存在唯一性、渐近解及其余项估计。
Under a given assumption, the author of this paper obtained the uniformly powerful asymptotic expansion of M order and made an estimation of the remainder in asymptotic series. 研究拟线性双曲型方程柯西问题,在一定假设下,得到解的M阶一致有效的渐近展开式,并作出余项估计。
The uniformly valid asymptotic expansion of solution for the problem is obtained. 得到了问题解的一致有效的渐近展开式。
In this paper, we discuss a class of second order quasi-linear elliptic equation and obtain the asymptotic expansion and superconvergence of finite element function and derivative by using generalized finite element method. 就一类二阶拟线性椭圆型方程,应用广义有限元方法,给出了有限元函数和导数的渐近展式和超收敛结果。
The asymptotic expansion matched method is applied to calculate the flow around a sphere based on N-S equation. 作者引用由渐近匹配展开方法所确定的N-S方程球体绕流渐近展开解将蠕变流推广到急变流的球体绕流解,导出了泥沙沉降阻力系数的计算公式。
Under suitable assumptions of differential inequalities, the existence of the solutions of the Robin problems is proved and the uniformly valid asymptotic expansion is obtained. 在适当的假设下,利用微分不等式作者证明了此Robin问题解的存在性,并得到了其一致有效渐近展式。
Asymptotic expansion and extrapolation for the finite element approximation of Nonlinear Elliptic Partial Differential Equations 一类非线性椭圆型偏微分方程有限元近似的渐近展开与外推
Under suitable conditions we proved existence of solution and its uniformly valid asymptotic expansion of arbitrary order is given. 在适当的假设下,证得解的存在并给出任意阶的一致有效的渐近展开式。
The likelihood ratio criterion of sphericity test, its asymptotic expansion and limiting distribution are obtained. 论文得到了球形检验的似然比准则,它的渐近展开与极限分布。
The computational results demonstrate the finite element asymptotic expansion theory for eigenvalue problem provided in [ 4]. 计算结果验证了[4]中特征值问题的有限元渐进误差展开理论的正确性。
The iterative method is simpler than the asymptotic expansion method of calculation. 而且,在计算上迭代方法比渐近展开法更为简单。
By introducing extended variables and using the theory of differential inequality, the uniformly effective asymptotic expansion is obtained under appropriate conditions. 在适当的假设条件下,通过引进不同量级的伸长变量,构造不同厚度的初始层校正项,并利用微分不等式理论,得到了解的任意次近似的一致有效的渐近展开式。
The first-order and second-order boundary layer equations in noninertial reference frame is derived using the technique of matched asymptotic expansion. The first-order boundary layer equation is identical to the classical boundary layer equation as the pressure term is eliminated; 本文用匹配渐近展开法导出二维翼型在非惯性坐标系中的一阶和二阶边界层方程,消去压强项后,一阶边界层方程与经典边界层方稃相同;
Under the appropriate assumptions, using the fixed-point theorem we obtain the existance of the perturbed solution and give its asymptotic expansion, which is uniformly valid for the arbitrary order. 在适当的假定下利用不动点定理,得到摄动问题解的存在性,并给出解的任意阶一致有效渐近展开式。
The existence and stability of periodic solution are studied by using the bifurcation theory, linear stability theory and the method of asymptotic expansion. 运用分歧理论、固有值的解析摄动理论和渐近展开的方法,获得了共存时间周期解的存在性和稳定性。
The exponential stability and an asymptotic expansion of spectrum are obtained. 从而系统的谱决定的增长条件,指数稳定性成立。并给出了特征值的渐近展开式。
The Asymptotic Expansion and Correction for Approximating Solution of Operator Equation 算子方程近似解的渐近展开与校正
An asymptotic solution of boundary value problems for a class of third order nonlinear differential equations both involving two parameters and jacketed layer is estimated. In addition, the uniformly valid asymptotic expansion of solution of any orders is obtained. 对含双参数且有套层解的一类三阶非线性微分方程的边值问题的渐近解做了估计,得到了任意次近似的一致有效的渐近展开式。
In this paper a class of singular perturbation of nonlocal boundary value problems for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion of solution is obtained. 本文利用微分不等式理论研究了一类高阶椭圆型微分方程非局部边值问题的奇摄动.得到了其解一致有效的渐近展开式。
The Rayleigh inverse-iteration method and boundary layer asymptotic expansion method are used to solve the blunt cone boundary layer stability equation to get reliable boundary layer transition data. 然后应用反迭代法与边界层渐近匹配的方法求解了钝锥边界层的稳定性方程,得到了钝锥边界层转捩数据。
Then the asymptotic expansion of the numerical solution is established. 然后建立了差分周期解的浙近展开式。
We apply the boundary layer directly by two-variable expansion method and deduce1st-order asymptotic expansion of the solution. 并运用两变量展开直接构造边界层的方法,导出解的一阶渐近展开式。
The dirichlet Problem in the critical case for a quasilinear singular perturbed second order differential system is considered, also the asymptotic expansion is given and the existence and uniqueness of the solution is proved. 研究了临界情形的拟线性二阶方程组的狄利克雷问题,证明了狄利克雷问题解的存在唯一性,并给出解的渐近展开式及余项,估计式。
The present paper presents an uniformly valid asymptotic expansion for a class of singular perturbation boundary value problems via the renormalization group method. 用重正化群方法,对一类非线性奇异摄动问题构造了一致有效的渐近展式。
Furthermore, we give the numerical experiment results for a non-linear radiation heat conduction equation with single-temperature, which show that the asymptotic expansion method is effective. 同时,我们还针对一种具有实际应用背景的非线性单温模型问题,给出了相应的数值实验结果,表明了新算法的有效性。
Secondly, for a kind of linear radiation heat conduction equations, we design and analyze a linear finite element method based on the asymptotic expansion. 其次,针对二维线性辐射热传导方程组,设计并分析了基于渐近展开方法的线性有限元算法。